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Abstract

With the release of AMD’s Radeon RX 6000 series and NVIDIA’s RTX 20 series, a
new technology called mesh shaders was introduced and given full support. It serves
as an alternative to the traditional graphics rendering pipeline and despite the mostly
positive reception, the technology is still rarely used in commercial software. In this
thesis, I will give an overview of the technology, implement a terrain renderer with
LOD (Level of Detail) optimizations, and compare the development process to that
of a traditional pipeline.

Wraz z wydaniem kart serii Radeon RX 6000 od AMD i RTX 20 od NVIDIA,
wsparcie uzyskała nowa technologia zwana mesh shaders. Proponuje ona alterna-
tywę dla tradycyjnego potoku graficznego i mimo pozytywnych opinii, mesh sha-
dery rzadko spotyka się w komercyjnych programach. W tej pracy opiszę na czym
polega ta technologia, zaimplementuję program do renderowania terenu z optymali-
zacjami LOD (Level of Detail) i porównam proces tworzenia aplikacji z tradycyjnym
potokiem.
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Chapter 1

Introduction

The traditional graphics pipeline at its most basic level is structured in the following
way: a fixed input assembly stage receives vertex and primitive input data, passes
it onto the vertex shader, which further is rasterized and processed per pixel in the
fragment shader. This approach is too basic for modern graphic engines, and so
additional programmable shader stages were added: tessellation and geometry [1].
Although tessellation shaders find use in most engines, geometry shaders are seldom
found due to their often poor performance.

A new pipeline was proposed that makes use of mesh shaders to reduce the num-
ber of programmable stages and give more flexibility in terms of mesh generation and
input data. In order to explore potential uses of this technology, an implementation
of a terrain rendering application will be presented and the differences between the
two pipelines will be discussed, as well as several setbacks developers may face.
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Chapter 2

Mesh shaders

2.1 Overview

The first mention of mesh shaders can be traced back to late 2018 by Christoph
Kubisch[2]. The basis of designing mesh shaders was to improve rendering high-
resolution meshes required for outside environments or CAD meshes. They also
introduced a structure similar to compute shaders allowing for a design based on
work groups. Mesh shaders aren’t limited by an input assembly — any data our
shaders require has to be passed through buffer objects such as SSBOs or UBOs. An
example of mesh shader usage in the commercial market is the game ”Alan Wake
2” developed by Remedy Entertainment.

An example implementation of mesh rendering using mesh shaders in Vulkan
was provided by NVIDIA in the gl_vk_meshlet_cadscene project[3].

2.1.1 Meshlets

Meshlets are a key element of the mesh shader workflow — they are defined as a
mesh with an upper limit of primitives and vertices [4] — ideally, they maximize
the ratio of indexed primitives to unique vertices. They can be visualized as small
chunks or subdivisions of a given mesh (figure 2.1). The mesh can be split either
manually or via automatic pre-processing into such meshlets, which are then used in
mesh shader invocations as input data to generate the final geometry. The optimal
sizes for such meshlets depend on the vendor preferences, which can be queried at
runtime.

2.1.2 Mesh shader pipeline structure

The new pipeline (figure 2.2) proposed with the mesh shader technology is made up
of an optional task shader and a compulsory mesh shader stage. The task shader
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Figure 2.1: An example visualization of meshlets

Figure 2.2: The mesh shader pipeline

dispatches a specified number of mesh shader work groups and may pass to them
a small amount of data in the form of a payload[5]. Due to the lack of an input
assembly, the input mesh data may be passed through buffers such as shader storage
buffer objects. The mesh shader further generates the geometry we want rasterize.

2.1.3 Mesh shader program example

Listing 2.1 presents an example mesh shader that renders pre-calculated meshlets
without the use of task shaders. Lines 5 − 8 define the limits and what type of
primitives the shader will output; line 5 bears resemblance to compute shaders, as
we declare the size of mesh shader work groups. Lines 10 − 25 declare the input
data that will be processed by our shader. Unlike in a traditional vertex shader, the
data is passed through SSBOs. The lines 44, 51, 52 and 56 are worth of notice as
they make use of mesh-shader-specific API to output geometry that is then passed
onto the rasterizer.
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1 #version 460

2

3 #extension GL_EXT_mesh_shader : enable

4

5 layout (local_size_x=MAX_INVOCATIONS) in;

6

7 layout(max_vertices=MAX_OUT_VERT , max_primitives=MAX_OUT_PRIM) out;

8 layout(triangles) out;

9

10 layout(std430 , binding = 0) readonly buffer MeshletPrimitivesData {

11 uvec3 meshletPrimitivesData [];

12 };

13

14 layout(std430 , binding = 1) readonly buffer MeshletVertexData {

15 vec3 meshletVertexData [];

16 };

17

18 struct MeshletDescription {

19 int vertexDataOffset , vertexCount;

20 int primitivesDataOffset , primitiveCount;

21 };

22

23 layout(std140 , binding = 2) readonly buffer MeshletDescriptions {

24 MeshletDescription meshletDescriptions [];

25 };

26

27 layout( push_constant ) uniform constants {

28 mat4 transformationMatrix;

29 int baseMeshletOffset;

30 } PushConstants;

31

32 uint meshletID = gl_GlobalInvocationID.x;

33

34 void main() {

35 MeshletDescription myMeshlet;

36 meshletID = PushConstants.baseMeshletOffset + meshletID;

37 myMeshlet = meshletDescriptions.descriptions[meshletID ];

38

39 uint vertCount = myMeshlet.vertexCount;

40 uint primCount = myMeshlet.primitiveCount;

41

42 for (uint i = 0; i < vertCount; i++) {

43 vec3 vertex = meshletVertexData[myMeshlet.vertexDataOffset + i];

44 gl_MeshVerticesEXT[i]. gl_Position =

45 PushConstants.transform_matrix * vec4(vertex , 1.0);

46 }

47

48 for (uint i = 0; i < primCount; i++) {

49 uvec3 primitive =

50 meshletPrimitiveData[myMeshlet.primitiveDataOffset + i];

51 gl_PrimitiveTriangleIndicesEXT[i] = primitive;

52 gl_MeshPrimitivesEXT[i]. gl_PrimitiveID =

53 myMeshlet.primitiveDataOffset + i;

54 }

55

56 SetMeshOutputsEXT(vertCount , primCount);

57 }

Listing 2.1: Mesh shader code example
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2.1.4 Task shaders

An additional shader program can be written and compiled, called the task shader.
This stage allows for initial pre-processing of data and dispatching a certain amount
of mesh shaders — this allows for early meshlet culling, LOD selection, and other
algorithms or optimizations.

2.1.5 Task shader program example

The task shader example in listing 2.2 is simpler than the example mesh shader
program (listing 2.1) because its function is also simpler. Lines 14− 19 present the
core feature of a task shader: the task shader payload. In the example code the
meshletID used in the mesh shader will need to be calculated with the inclusion of
both the invocation ID of the mesh shader and the task shader’s invocation ID —
the reasoning for this is further explained in 2.2. Lastly, line 28 is a declaration of
how many mesh shaders should be emitted from this task shader invocation.

1 #version 460

2

3 #extension GL_EXT_mesh_shader : require

4

5 layout (local_size_x=MAX_TASK_INVOCS) in;

6

7 layout( push_constant ) uniform constants

8 {

9 uint taskCallMeshletOffset;

10 } PushConstants;

11

12 uint baseID = gl_WorkGroupID.x;

13

14 struct Task {

15 uint baseMeshletIDOffset;

16 vec3 additionalData;

17 };

18

19 taskPayloadSharedEXT Task OUT;

20

21 void main() {

22 OUT.baseMeshletIDOffset = PushConstants.taskCallMeshletOffset +

23 baseID * MAX_MESH_INVOCS;

24 OUT.additionalData = 42;

25

26 EmitMeshTasksEXT(MAX_MESH_INVOCS , 1, 1);

27 }

Listing 2.2: Task shader code example

2.2 Mesh shaders in the Vulkan API

Two extensions add support for mesh shaders in Vulkan: NVIDIA’s
VK_NV_mesh_shader and the cross-vendor VK_EXT_mesh_shader. For this project,
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the VK_EXT_mesh_shader extension will be used, although the differences between
the two implementations would be minimal. In order to use the extensions, when
creating the logical device with vkCreateDevice the extension features responsible
for the task and mesh shaders in VkPhysicalDeviceMeshShaderFeaturesEXT should
be set to true[6]. This will allow us to create task and mesh shader stages as well as
to make mesh-shader-specific draw calls.

When creating the graphics pipeline, as mentioned in 2.1.2, the user may create
a pipeline consisting only of the mesh and fragment shaders, or include all stages,
including the task shader stage. The appropriate bits for mesh and task shader
stages are VK_SHADER_STAGE_TASK_BIT_EXT and VK_SHADER_STAGE_MESH_BIT_EXT
and they must be used when creating the graphics pipeline.

Finally, when recording the command buffer, the Vulkan API exposes the follow-
ing draw calls: vkCmdDrawMeshTasksEXT, vkCmdDrawMeshTasksIndirectEXT and
vkCmdDrawMeshTasksIndirectCountEXT[7]. These calls work for both variants of
the mesh shader pipeline.





Chapter 3

Terrain renderer

In order to showcase an example implementation of a renderer that uses the mesh
shader technology, a terrain renderer is implemented using Vulkan and the
VK_EXT_mesh_shader extension.

3.1 Project setup

The application used to render the SRTM data with mesh shaders was written in
C++ and the following tools and dependencies were used:

• Vulkan SDK - for Vulkan usage.

• GLFW - a library for desktop development. It allows us to create a window,
process input, display rendered frames etc..

• shaderc - tools required for shader compilation. Especially libshaderc that
allows us to compile shaders at runtime.

• Dear ImGui - used for GUI rendering.

• stb image - used for loading textures.

• GLM - a popular math library.

• CMake - used for compiling the project binaries.

The project was developed on Ubuntu 24.04 and the source code is hosted on
GitHub under the following URL: https://github.com/Cez02/LOD-terrain-renderer-
thesis[8].
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3.1.1 Layout

The project features several key modules implemented as C++ classes. They are
responsible for GUI handling, heightmap loading, and Vulkan rendering.

Renderer

The Renderer class declared in tr_renderer.hpp handles the core rendering logic
of the application. The initVulkan and initVKSceneElements methods are re-
sponsible for initializing the renderer and the heightmaps in the scene respectively.
When initializing the renderer we need to enable required extensions, enable the
mesh shader features, create the swapchains, descriptor pools, command pools, ren-
der passes and other key elements needed for rendering a Vulkan scene. The second
function that initializes the scene also initializes the heightmaps used during render-
ing.

The drawFrame method is responsible for recording a command buffer, binding
the appropriate buffers and making the draw calls for each heightmap. Additionally,
the GUIHandler is used to draw the current GUI and the rendering statistics are
reset for the next frame.

Finally, at the end of the application’s runtime, the Vulkan renderer needs to
be de-initialized, and all created pools and buffers need to be destroyed. This is
done in the cleanup method.

Heightmap

The Heightmap class declared in tr_heightmap.hpp is an instance of a loaded
heightmap. The heightmap is created with a path to its respective SRTM file path
and later initialized by the Renderer — this initialization involves loading the file
and reading its elevation values (which are also laid out in a specific order described
in 3.3), reading the file’s name as geographic coordinates and creating the SSBOs
keeping the heightmap values.

Additionally, during initialization, the heightmap’s grid is split into chunks of
9 × 9 which will serve as our meshlets. These meshlets overlap each other by one
unit on each side (figure 3.1) and each will generate 64 quads. This length allows
for rendering meshlets in four resolutions: 100%, 50%, 25% and 12.5%.

SRTM files contain 1201 × 1201 grids for SRTM-3 and 3601 × 3601 grids for
SRTM-1, using 2-byte signed integers — the values represent elevation values sam-
pled at 3 and 1 arc seconds respectively[9]. The terrain renderer will support both
SRTM-1 and SRTM-3 file formats. The files are also named according to the ge-
ographic coordinates they represent; this is required as the file itself only contains
raw elevation data.
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Figure 3.1: An example meshlet built from the heightmap with overlapping meshlet
borders visualized. Each cell is one elevation value of the SRTM file.

Each heightmap can also be drawn with the draw method. This binds the
necessary buffers and creates draw calls that dispatch the vendor-preferred number
of task shader invocations.

Shader compiler

Shaders in the terrain renderer program are compiled during initialization at runtime
with the use of the shaderc library[10]. This is done in order to pass on compile-time
definitions that abide by vendor preferences which can only be queried at runtime
when picking the physical device.

The terrain renderer reads the header file common_template.h and replaces cer-
tain patterns with the required values. Next this new version of common_template.h
is written to common.h which is then included in all shader programs. This allows
us to pass the defined meshlet length, workgroup invocation count per each stage
and other key properties as preprocessor definitions. Listings 3.1 and 3.2 present
an example usage of such pattern replacement, and listing 3.3 contains the exact
properties defined in common_template.h.
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1 #define MAX_PREFERRED_MESH_WORK_GROUP_INVOCATIONS

$m_MaxPreferredMeshWorkGroupInvocations

2

3 struct meshletDescription {

4 ...

5 }

Listing 3.1: common_templates.h example code fragment, before shader
compilation.

1 #define MAX_PREFERRED_MESH_WORK_GROUP_INVOCATIONS 32

2

3 struct meshletDescription {

4 ...

5 }

Listing 3.2: common.h example code fragment, after shader compilation.

1 #define MAX_PREFERRED_MESH_WORK_GROUP_INVOCATIONS

$m_MaxPreferredMeshWorkGroupInvocations

2 #define MAX_PREFERRED_TASK_WORK_GROUP_INVOCATIONS

$m_MaxPreferredTaskWorkGroupInvocations

3 #define MAX_MESH_OUTPUT_VERTICES $m_MaxMeshOutputVertices

4 #define MAX_MESH_OUTPUT_PRIMITIVES $m_MaxMeshOutputPrimitives

5

6 #define MESHLETS_PER_TASK_INVOCATION $m_MeshletsPerTaskInvocation

7 #define MESHLETS_PER_MESH_WORKGROUP $m_MeshletsPerMeshWorkGroup

8

9 #define MESHLET_LENGTH $meshletLength

Listing 3.3: All definitions contained in common_temlates.h that will be included
during shader compilation.

In order to compile a shader program using shaderc, the original shader source
code has to pass through three stages: preprocessing, compilation of GLSL code to
SPIR-V code and finally the assembly of the SPIR-V code into a SPIR-V binary
file. The shaderc library also exposes several compilation options such as choosing
the target SPIR-V or Vulkan version.

During development of the terrain renderer application an error was found caus-
ing the SPIR-V version to always be set to 1.0 — a fixed version of the compiled
shaderc library is included with the project’s source code.

3.2 Usage

The terrain renderer can be launched with the following command-line options:

• --starting-position <COORDINATES> - this option sets the player’s position
to the specified COORDINATES which have to follow the SRTM file naming
convention. Example usage: --starting-position N34E014. By default,
the starting position is near N42E013
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• --heightmaps-directory <DIRECTORY> - this option informs the program
from which directory the input heightmaps should be read. This directory has
to feature only the desired SRTM files. Example usage:
--heightmaps-directory ./heightmaps. By default, the terrain renderer is
launched with the option set to ./heightmaps.

Upon launch, the terrain renderer will load the heightmaps and once the pro-
gram is running, the observer can be moved with the following inputs:

• The WASD are used for moving the player forward, left, backwards and right
respectively.

• The Spacebar and CTRL keys are used to gain and lose altitude respectively.

• The E and Q keys are used for rotating the observer right and left respectively.

Additionally, the Left shift key may be held while moving in any direction
in order to increase the movement speed.

3.3 Rendering

Meshlets and data organization

For this terrain rendering program, the definition of meshlets differs from the tra-
ditional as there are no defined meshes and models in the program — the meshlet
description (listing 3.4) only serves the purpose of dictating which parts of a given
heightmap to render. Although it has been established in 3.1.1 that all meshlets
are of 9 × 9 dimensions, the dimensions of a given meshlet are still specified in its
description to allow experimentation and meshlet sizes that are not divisors of the
heightmaps size. The HeightmapDataOffset field specifies the place of the meshlet
elevation values in the heightmap data buffer.

1 struct MeshletDescription {

2 uvec2 Offset;

3 uvec2 Dimensions;

4 uint HeightmapDataOffset;

5 };

Listing 3.4: Meshlet description

Meshlet descriptions and heightmap elevation data are stored in two respective
buffers: meshletDescriptions and heightmapData. The meshlet descriptions are
stored in the order they were built; however, the elevation data is stored in chunks
corresponding the each meshlet — all elevation values required for a given meshlet
are stored in one contiguous chunk row-by-row to improve locality.
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One optimization that is possible here is encoding the meshlet into a smaller size,
dedicating 2 bytes per Offset and Dimensions fields to improve bandwidth usage.
However, this may not be as beneficial if the decoding method’s speed offsets the
improved bandwidth usage. Such encoding may be beneficial in traditional, model-
based scenarios where more data needs to be stored in the meshlet description.

Task shader

The task shader of the terrain renderer performs several tasks: early meshlet culling,
LOD selection, meshlet sorting and mesh shader emission.

The task shader works in work groups made up of 32 invocations, where each
work group contains a shared 2D u16vec2 meshletBuckets[LOD levels][n] buffer
where n is the maximum number of meshlets processed per work group. Each task
shader invocation iterates over MESHLETS_PER_TASK_INVOCATION meshlets, decides
whether to cull the meshlet, calculates their LOD level and emplaces the meshlet
information (figure 3.3) into the respective meshletBuckets shared buffer according
to its LOD level in the form of a meshletInfo object (figure 3.3).

The information regarding meshlets is passed onto the mesh shader program
via the task shader payload. The payload (listing 3.5) contains the data required
for final primitive creation in the mesh shader stage.

1 struct TaskPayload {

2 u16vec2 meshletClusters[n];

3 u16vec2 meshletInfoBuffer[n];

4

5 uint meshShaderProcessingUnitsCount;

6 uint meshletInfoBufferCount;

7

8 uint baseMeshletID;

9 uint heightmapLength;

10

11 float longitude;

12 float latitude;

13

14 vec3 observerPosition;

15

16 uint globalMeshletCount;

17 };

Listing 3.5: The structure used as the task shader payload passed onto the mesh
shader stage. n is defined as the maximum number of meshlets processed by the
task shader work group.

Once all invocations have processed their meshlets, the first invocation with
gl_InvocationID.x being equal to 0 performs an algorithm (listing 3.6) that creates
meshlet clusters (figure 3.3) out of the prepared meshlet info objects — these units
are further used in the mesh shader work groups.
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1 declare currentCluster

2

3 for LODlevel in 0..3:

4 currentCluster = new()

5

6 let maxClusterSize = 1 << (2* LODlevel)

7

8 for meshlet in meshletBuckets[LODlevel ]:

9

10 add meshlet to currentCluster

11

12 if currentCluster contains maxClusterSize meshlets:

13 add currentCluster to taskShaderPayload.meshletClusters

14 currentCluster = new()

15

16 if currentCluster not empty and not added:

17 add currentCluster to taskShaderPayload.meshletClusters

Listing 3.6: Meshlet cluster building algorithm

The algorithm from listing 3.6 creates meshlet clusters that are responsible for
drawing sets of meshlets that share the same LOD level. The number of these
meshlets in each processing unit is dictated by the LOD level of these meshlets; the
reason for this is explained in 3.3. After the algorithm is finished, the invocation
emits as many mesh shader work groups as there are meshlet clusters.

Figure 3.2: Layout of the meshlet cluster buffer and the meshlet info buffer.

Mesh shader

The mesh shader program performs the main task of primitive generation. Each
work group consists of 64 invocations, where each invocation generates two primi-
tives (which make up 1 quad) based on the information contained in its respective
meshlet cluster. This cluster is selected based on the gl_WorkGroupID.x index. This
structure is visualized in figure 3.4.
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Figure 3.3: Layout of meshlet cluster and meshlet info structures.

Figure 3.4: Mesh shader work group and invocation structure. The work group
processes several meshlets, and each invocation processes a quad from one of these
meshlets.

Each meshlet contained in a given meshlet cluster is of the same LOD level. Let
LOD ∈ {0, 1, 2, 3} be this LOD level (LOD optimization is further explored in 3.4.2)
— the number of quads inside the meshlet Q is then equal to 22(3−LOD). Using Q,
for each mesh shader invocation, using its gl_LocalInvocationID.x, we determine
the meshlet info buffer offset to be gl_LocalInvocationID.x / Q and the quad ID
to be gl_LocalInvocationID.x % Q. This way each meshlet cluster is capable of
containing a varying number of meshlets which scales with the LOD level.

Having identified the quad to be drawn by the mesh shader invocation, we
calculate the global meshlet ID by obtaining the offset from the meshletInfo object
and adding it to the global offset included in the task shader payload. We then
access the meshletDescription SSBO and obtain the necessary heightmap elevation
values to finally create the vertices and primitives.
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Figure 3.5: Diagram presenting how the observers looking direction dictates that
meshlet B ought to be rendered however meshlet A be culled.

3.4 Optimizations

3.4.1 Culling methods

Meshlet and heightmap culling is an important optimization that avoids unneces-
sary task and mesh shader invocations. Although the methods below describe the
methods only for meshlets, the same optimizations are applied to whole heightmaps
too, except these are implemented on the CPU whereas meshlet culling is performed
on the GPU.

Two cases can be distinguished where culling is viable: when a meshlet is beyond
the visible horizon and when a meshlet is behind the observer.

Basic view culling

Frustum culling is the method of culling mesh data that would otherwise be ren-
dered outside of the view frustum[11]. The method implemented in this scenario
is different, as it only takes into account whether the meshlet we are trying to cull
is behind the observer (figure 3.5), meaning certain meshlets will still be rendered
outside of the observers view frustum. This method however is simpler and requires
less data required for culling calculations to be passed into the shader programs.

In order to see if the meshlet should be culled, we take the vector
#»

d be-
ing the direction in which the observer is currently looking and the vector #»v =

meshletPosition - observerPosition. Next we take the dot product of the vectors
and if the result is less than or equal to 0, the meshlet will be culled.
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Figure 3.6: Horizon distance diagram.

Horizon culling

To calculate the horizon distance for the observer, only the Pythagorean theorem is
needed (figure 3.6).

d2 +R2 = (R+ h)2

d =
√
R2 + 2Rh+ h2 −R2

d =
√
2Rh+ h2

To cull a meshlet, we take the global positions of its four corners and compare
the distances between them and the observer with the calculated horizon distance.
If all of the distances are longer than the horizon distance, we can conclude the
meshlet is beyond the horizon and hence cull it.

3.4.2 LOD rendering

LOD rendering, meaning level of detail rendering, is an optimization including the
software scaling a given asset’s detail level[12]. For a mesh this often means switch-
ing between models of varying polygon count and for textures utilizing different
resolutions.

In the case the terrain renderer, the optimization is very natural given the
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Figure 3.7: Presentation of the squares generated with each LOD level. The colours
gray, purple, green and red respectively represent LOD levels 1, 2, 4 and 8.

structure of the meshlets — each meshlet can be rendered in four LOD levels: 0,
1, 2, 3, where with each LOD level quads are constructed from heightmap elevation
values separated by 2LOD units (figure 3.7); given that the meshlet’s length is fixed
to 9 units, such quad building is possible.

The meshlet LOD level is calculated following the formula:

dist = length(meshletPosition - observerPosition)

LOD = roundDown(
clamp(dist, 0, 800)

250
)

This causes meshlets further from the observer to be rendered with less details
and polygons to improve performance.

Meshlet stitching

When using LOD optimization, one problem that may appear is lack of meshlet
stitching (figures 3.8 and 3.9). This is caused when two meshlets neighbouring each
other are rendered with different LOD levels. This problem is purely visual and
does not affect the performance, however in a commercial use-case addressing these
artifacts would be necessary.

One solution is creating transitional meshlets that align one side with the neigh-
bouring lower-LOD meshlet’s vertices. This however requires detecting where such
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meshlets are and which sides ought to be prepared differently which may impact
shader performance. In the terrain renderer, this issue is ignored due to the small
scale of the problem.

Figure 3.8: Artifacts caused by the lack of meshlet stitching can be seen in the
labeled parts of the screenshot.

Figure 3.9: A diagram presenting the potential artifact caused by lack of meshlet
stitching. Meshlets A and B are neighbouring meshlets of different LOD levels.
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Comparison to the traditional pipeline solutions

Using mesh shaders and in turn meshlet-based shader design, LOD rendering is
made much simpler and more intuitive than in the traditional rendering pipeline.
Elements such as LOD selection in traditional solutions often require implementing
compute shaders that would perform the selection. Additionally, alternate primitive
generation still requires a separate implementation of the tesselation or geometry
shader, whereas, using mesh shaders, the selection and generation is naturally im-
plemented along both the task and mesh shaders.
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Performance

The terrain renderer was tested in several cases and scenarios with the performance
recorded. The calculated averages are presented in the result tables. All heightmaps
are of the SRTM-3 format and were downloaded from Coverage map
viewfinderpanoramas[13].

All tests were performed on a Lenovo Legion 5 laptop with a AMD Ryzen™ 5
4600H CPU, an RTX 2060 GPU and 32 GB of RAM.

4.1 Case 1: Single heightmap

(a) The heightmap being rendered with the
observer in the middle and close to the
ground.

(b) The heightmap being rendered from far
away with each meshlet at LOD level 3 ( 1

8
-

resolution)

Figure 4.1: Two captured scenarios including a single heightmap being rendered.

For the single heightmap case, two scenarios were tested:

(a) The heightmap being rendered with the observer in the middle and close to
the ground

29
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(b) The heightmap being rendered from far away with each meshlet at LOD level
3 (18 -resolution)

The heightmap contains 1201×1201 elevation values, meaning 2880000 triangles
account for the whole heightmap. This also means 22500 meshlets are prepared for
this heightmap.

Single heightmap test results

Scenario Primitives
generated

Task shader
invocations

Mesh shader
invocations

Render time
(ms/FPS)

(a) ∼ 1.00M trigs 2272 ∼540,000 3.2ms
312 FPS

(b) 45,000 trigs 2272 22,528 1.7ms
588 FPS

4.1.1 Results analysis

Two observations can be made regarding these results. Firstly, the number of gen-
erated primitives is in fact around twice the amount of mesh shader invocations —
this is expected as each mesh shader invocation should generate one quad, however
it is important to note the program is not generating a significant amount of useless
mesh shader invocations.

Secondly, despite the number of mesh invocations being almost 25 times higher
in scenario (a) than (b), the performance only reduced by 50%. It will become
apparent with subsequent cases however that the performance will depend on several
factors, primarily the number of task shader invocations.
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4.2 Case 2: Nine neighbouring heightmaps

(a) The heightmaps being rendered with the
observer in the middle and close to the
ground.

(b) The heightmaps being rendered from far
away with each meshlet at LOD level 3 ( 1

8
-

resolution)

Figure 4.2: Two captured scenarios including nine neighbouring heightmap being
rendered.

For the 9 neighbouring heightmaps case, two scenarios were tested:

(a) The heightmaps being rendered with the observer in the middle and close to
the ground

(b) The heightmaps being rendered from far away with each meshlet at LOD level
3 (18 -resolution)

The heightmap names range from N44E006 to N46E008, meaning they represent
majority of the Alps mountain ranges. There are 202500 meshlets that need to be
processed when rendering the heightmaps.

Nine heightmaps test results

Scenario Primitives
generated

Task shader
invocations

Mesh shader
invocations

Render time
(ms/FPS)

(a) ∼1.59M trigs 20,448 ∼802,000 12.00ms
81 FPS

(b) 405,000 trigs 20,448 202,752 10.60ms
95 FPS

4.2.1 Results analysis

A key observation can be made here based on the results of case 1 and case 2: despite
the number of mesh shader invocations in case 2 scenario (b) being less than a half
of the invocations in case 1 scenario (a), the performance is 3× worse. This is caused
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by the significant increase of task shader invocations which are much slower than the
mesh shader invocations as their tasks are more complex. This may suggest reducing
the number of task shader invocations or reducing the amount of calculation that
must be done and moving it to the CPU could be significantly beneficial to the
performance.

It is also worth noting that despite the number of primitives rising almost 4×
(like the mesh shader invocation count) between the cases, the rendering time is
stable and only changes by 15%. This again suggests the key role of the task shader
invocations and how their count makes a big impact on the performance.

4.3 Case 3: Northern Poland heightmaps

(a) Northern Poland being rendered with the
observer positioned centrally and close to the
ground.

(b) Northern Poland being rendered from high
above the ground.

Figure 4.3: Two captured scenarios including heightmaps from the northern Poland
region.

For the northern Poland heightmaps case, two scenarios were tested:

(a) The heightmaps being rendered with the observer positioned centrally and
close to the ground

(b) The heightmaps being rendered from high above the ground

This case makes use of 68 heightmaps, resulting in 1530000 meshlets that may
need to be processed at a time.
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Northern Poland test results

Scenario Primitives
generated

Task shader
invocations

Mesh shader
invocations

Render time
(ms/FPS)

(a) ∼2.17 trigs 36,352 ∼1.10M 19.08ms
52 FPS

(b) ∼2.83M trigs 147,680 ∼1.43M 68.05ms
15 FPS

4.3.1 Results analysis

The observations from case 2 suggested the number of task shader invocations could
be making a significant impact on the performance on the program. The 3.5×
reduction in render time between scenarios (a) and (b) and the significant increase
in task shader invocations appears to support this observation further. Additionally,
the majority of these task shader invocations handle LOD level 3 meshlets which
account for a lower primitive count and subsequently result in a low task shader
invocation to primitives generated ratio.
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Conclusion

5.1 The mesh shader workflow

The process of creating an application utilizing mesh shaders forces the developer to
make certain core design choices in terms of mesh handling and rendering. These are
natural and intuitive in the case of a terrain rendering program where the heightmaps
can be split into regular chunks and rendered separately.

The design based around meshlets allows for a more straightforward approach
regarding LOD selection. In commercial software often pre-processing such as LOD
selection or frustum culling is performed using compute shaders or on the CPU side.
Although the traditional pipeline rendering programs are also often parallelized, this
is dependent on a given vendor and their implementation. Mesh shaders avoid this
and deliver themselves the compute-like work group architecture.

The compute-like work group architecture of mesh shaders however migrates
much of the responsibility regarding GPU warp utilization onto the developer. It is
necessary to make choices that make efficient use of GPU warps. Additionally, it is
key to also make efficient use of the task shader payload with a standard limit of
16KB.

The migrated responsibility also includes vendor-specific preferences. Unlike
the traditional pipeline where extensions are generally optional and may be used
for a given vendor’s hardware, here the preferred limits regarding primitive output,
work group sizes and other key elements of the mesh shaders need to be queried and
taken into consideration.

5.2 Terrain renderer problems and solutions

The terrain renderer implemented in this thesis has several problems that if ad-
dressed, may increase the performance significantly.
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Firstly, as stated in the performance tests and especially case 3 (4.3) results
analysis, the number of task shader invocations appears to be the main bottleneck
in terms of performance. The task shaders appear to be suboptimal and their
significant increase also causes likely significant increases in rendering times. One
way task shaders could be utilized more optimally would be by scaling the amount
of meshlets per task shader invocation with their LOD levels — for example, a group
of 64 LOD level 3 meshlets can be placed in one meshlet cluster. Assuming a task
shader work group processes only 320 meshlets and all of them are LOD level 3,
only 5 meshlet clusters will be created. This is an important case as LOD level 3
meshlets are the most popular, yet producing only 5 meshlet clusters per 32 task
shader invocations is a major waste of potential task shader payload memory.

Another problem that may be noticed with the terrain renderer, is the 1:2 ratio
of mesh shader invocations to primitives generated. Each mesh shader work group
is capable of outputting 256 primitives and 256 vertices when using the RTX 2060,
however reserving a mesh shader invocation for generating only one quad will only
produce 128 primitives and 256 vertices in the best case scenario. Generating new
vertices per each quad is not optimal however allows for a simpler implementation
including the meshlet clusters. An implementation utilizing meshlet clusters that
avoids duplicate vertex generation could be possible however, it would require the
meshlet clusters to be prepared in compact chunks rather than simple strips. This
would ultimately create a hierarchal design of heightmaps, meshlet clusters and
meshlets.

Lastly, the shader programs feature branching in certain areas of the shader
code, which results in poor utilization of the SIMT (Single instruction, multiple
threads) model. In order for shader work groups to perform calculations optimally,
single instruction multiple threads cores[14] found on the GPU require the invoca-
tions to have a similar or the same instruction set — every branch however, causes
invocation instruction splits and increases SIMT thread demand. Avoiding these
branches could be done using bitwise operations, alternative calculations, loop un-
rolling and other techniques.

In summary, the program serves a good starting point and introduction to mesh
shader programming, however still requires much work in terms of optimization and
better warps usage.
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